首页> 外文OA文献 >Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains
【2h】

Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains

机译:过量表达莱茵衣藻的CrmTp4与天然废水耐受性微藻菌株相比的金属生物修复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metal pollution in freshwater bodies is a long-standing challenge with large expense required to clean-up pollutants such as Cd. There is widespread interest in the potentially low-cost and sustainable use of biological material to perform bioremediation, such as the use of microalgae. Efficient metal bioremediation capacity requires both the ability to tolerate metal stress and metal accumulation. Here, the role of a Chlamydomonas reinhardtii metal tolerance protein (MTP) was examined for enhanced Cd tolerance and uptake. The CrMTP4 gene is a member of the Mn-CDF clade of the cation diffusion facilitator family of metal transporters but is able to provide tolerance and sequestration for Mn and Cd, but not other metals, when expressed in yeast. Over-expression of CrMTP4 in C. reinhardtii yielded a significant increase in tolerance to Cd toxicity and increased Cd accumulation although tolerance to Mn was not increased. In comparison, the metal tolerance of three chlorophyte microalgae strains (Chlorella luteoviridis, Parachlorella hussii, and Parachlorella kessleri) that had previously been adapted to wastewater growth was examined. In comparison to wild type C. reinhardtii, all three natural strains showed significantly increased tolerance to Cd, Cu, Al and Zn, and furthermore their Cd tolerance and uptake was greater than that of the CrMTP4 over-expression strains. Despite CrMTP4 gene over-expression being a successful strategy to enhance the Cd bioremediation potential of a metal-sensitive microalga, a single gene manipulation cannot compete with naturally adapted strain mechanisms that are likely to be multigenic and due in part to oxidative stress tolerance.
机译:淡水水体中的金属污染是一项长期挑战,需要大量费用来清除Cd等污染物。人们对潜在地低成本和可持续地使用生物材料进行生物修复(例如使用微藻)感兴趣。有效的金属生物修复能力既需要耐受金属应力的能力,又需要金属积累的能力。在这里,检查了莱茵衣藻金属耐受蛋白(MTP)的作用,以增强Cd耐受性和吸收。 CrMTP4基因是金属转运蛋白阳离子扩散促进剂家族的Mn-CDF进化枝的成员,但当在酵母中表达时,能够提供对Mn和Cd的耐受性和螯合能力,但对其他金属不提供耐受性。尽管没有增加对Mn的耐受性,但是在莱茵衣藻中CrMTP4的过表达导致对Cd毒性的耐受性显着增加和Cd积累的增加。相比之下,检查了先前已适应废水生长的三种绿藻植物微藻菌株(小球藻,小白菜小球藻和凯斯小球藻)的金属耐受性。与野生型莱茵衣藻相比,所有三种天然菌株均显示出对Cd,Cu,Al和Zn的耐受性显着提高,此外,其对Cd的耐受性和吸收均高于CrMTP4过表达菌株。尽管CrMTP4基因过表达是增强金属敏感微藻的Cd生物修复潜能的成功策略,但是单个基因操作不能与可能是多基因的自然适应的菌株机制竞争,这部分归因于氧化应激耐受性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号